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Abstract. In this study we investigate the behavior of solution-processed metal-oxide-

semiconductor transistors utilizing organic polymeric gate dielectrics. By adopting organic 

dielectrics covering a range of chemistries and relative permittivity values, we demonstrate 

the general outstanding performance of the resulting hybrid devices, which feature state-of-

the-art charge-carrier mobility and the capability of low voltage operation, while allowing 

solution-based processing. Furthermore, we show the extraordinary stability of these 

transistors under constant-current bias stress. 
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Solution-processed amorphous metal-oxide semiconductors (AMOxSs) have the potential to 

play a primary role in the development of large-area electronics, given their outstanding 

charge-carrier mobility and ease of processing.
[1–3]

 Thin-film transistors (TFTs) based on such 

semiconductors, however, are yet to achieve full solution processability for their potential to 

be actualized. In fact, the metal-oxide-semiconductor community has thus far primarily 

focused on inorganic dielectrics, such as SiNx,
[4]

 AlOx,
[5,6]

 ZrOx,
[7]

 HfOx,
[8,9]

 and TaOx,
[10]

 on 

the basis of their atomic interface structures and thermo-mechanical properties being similar 

to the ones of AMOxSs. In most cases these dielectrics are deposited in vacuum (by RF-

magnetron sputtering,
[11,12]

 ALD,
[13]

 and PECVD.
[4,14]

 Their solution-based deposition has 

also been demonstrated, with process temperatures typically in the region of 300 ºC,
[6,9,15–18]

 

or at dramatically lower values if in combination with UV exposure.
[19]

 Other gate-dielectric 

routes that have been explored include self-assembled nanodielectrics and polyelectrolytes.
[20–
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23]
 Finally, few isolated reports deal with amorphous metal-oxide transistors with a polymeric 

gate dielectric (predominantly cross-linked PVP).
[24,25]

  

A pressing concern within the AMOxS community is low-voltage TFT operation, which 

demands a strong capacitive coupling between the gate electrode and the semiconductor. A 

commonly explored route consisted in using high-κ inorganic materials (i.e., SiNx, AlOx, 

ZrOx, HfOx). It was found challenging, however, to achieve stable transistor operation and 

low gate leakage currents with gate dielectrics of this class,
[10,26–28]

 in view of the large band 

gap of AMOxSs (> 3 eV) and the observed inverse correlation in inorganic dielectrics 

between relative permittivity and bandgap.
[29,30]

 In fact, minimum energy offsets (≈ 1 eV) 

between the conduction/valence bands of the semiconductor and the gate dielectric are needed 

to confine the charge carriers at the active interface and minimize undesirable charge injection 

from the semiconductor into the gate dielectric.
[31]

  

Given the great interest in achieving full solution processability of metal-oxide-based 

transistors, here we present a comprehensive study on the general applicability of organic 

polymeric insulators as their gate dielectrics, and investigate the dependence of device 

performance on the polymer dielectric constant. We discuss the expected energy-level 

alignment with amorphous metal-oxide semiconductors, and present a detailed analysis of the 

field-effect mobilities, subthreshold slopes, interfacial trap densities, and gate leakage of the 

AMOxS transistors. We demonstrate in particular that high-κ polymeric gate dielectrics 

exhibit excellent performance in combination with AMOxSs and allow low-voltage TFT 

operation below 5 V. Finally, we illustrate the outstanding electrical stability of our devices 

under constant-current stress, which highlights the strength of the polymeric route to fully 

solution-processable AMOxS transistors. 
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Experimental Section  

All our TFTs were produced in the staggered top-gate geometry on Corning® 1737 slides. 

The source and drain electrodes, consisting of thermally-evaporated gold (20 nm thick) on an 

ultra-thin chromium adhesion layer (1 nm thick), were patterned by conventional 

photolithography into an interdigitated structure having a channel length of L = 10 μm and a 

channel width of W = 1 mm. After source and drain deposition and patterning, we coated our 

samples with the metal-oxide precursor, which was subjected to the annealing step detailed in 

the following. The resulting metal-oxide film was then patterned via conventional wet etching 

in diluted hydrochloric acid,
[32]

 so to confine it to the regions around the source and drain 

electrodes. Subsequently, we coated the samples with an organic polymeric dielectric spun 

from a solution in a suitable organic solvent. Finally, aluminum gate electrodes (40nm thick) 

were thermally evaporated through a shadow mask directly above the transistor active regions. 

The solution-based amorphous metal-oxide semiconductor utilized in this work is an indium-

zinc oxide (IZO, with an 8:2 blending ratio of the alkoxide-based indium and zinc precursors) 

produced in thin-film form according to the ‘sol–gel on chip’ method described 

elsewhere.
[3,33]

 Banger et al. demonstrated transistor operation of this specific IZO in bottom-

gate staggered TFTs having SiO2 and Al2O3 as gate dielectric, with a reported electron 

mobility monotonically dependent on annealing temperature.
[33]

 The two-hour-long annealing 

treatment we subjected our metal-oxide films to was carried out in air at 275 ºC and under UV 

illumination (at a wavelength of 254 nm and with a 5−8 mW cm
-2

 irradiance). 

Our TFTs comprise organic polymeric dielectrics whose repeat units are shown in Table 1: 

CYTOP™, an amorphous fluoropolymer of the PTFE family; poly(α-methylstyrene) (PαMS), 

a hydrophobic polymer with a phenyl functionality; poly(styrene-co-acrylonitrile) (SAN), a 

copolymer with nitrile functionality; poly(bisphenol A carbonate) (PC), a stiff thermoplastic 

with outstanding thermal stability; poly(methyl methacrylate) (PMMA), a ubiquitous 

polyacrylate with excellent optical transparency; P(VDF-TrFE-CFE), a fluorinated relaxor 
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ferroelectric terpolymer, referred to as FRFT in the following. CYTOP™ was purchased from 

Asahi Glass Co. Ltd., PαMS from Polymer Source Inc., SAN and PC from Scientific Polymer 

Inc., PMMA from Sigma-Aldrich®, and the FRFT from Piezotech SAS. Except CYTOP™, 

which was received in solution, all the other polymers came in the form of pellets or powder 

and were dissolved in suitable anhydrous organic solvents: PαMS was dissolved in xylene at a 

concentration of 60 mg mL
-1

; SAN in butyronitrile at 40 mg mL
-1

; PC in 1,2-dichlorobenzene 

at 80 mg mL
-1

; PMMA in n-butyl acetate at 40 mg mL
-1

; FRFT in n-butyl acetate at 40 mg 

mL
-1

. The polymers were all deposited by spin coating at angular speeds in the region of 

2000−5000 rpm. The spin coating was carried out in a nitrogen glovebox with ppm levels of 

both oxygen and water. Their resulting thickness is in the region of 100−200 nm, except for 

the CYTOP™ films, for which tI = 330nm. Their thermal curing (i.e., drying) was conducted 

at 80 ºC. 

The current-voltage characterization of our transistors was performed at room temperature in 

a nitrogen-atmosphere glovebox (with oxygen concentration below 2 ppm at all times) 

utilizing an HP4155C SPA (Agilent Technologies). The reported transistor mobility was 

calculated from the linear transfer characteristics as μ = (VDS CI W/L)
-1

 (dIDS/dVGS), where CI 

is the gate dielectric capacitance per unit area. 

Impedance analysis was used to characterize the relative permittivity of our polymeric 

dielectrics, from which we derived the field-effect capacitance of our TFTs. Metal-insulator-

metal (MIM) structures were produced to this end, the impedance of which was measured 

with an HP4192A impedance analyzer (Agilent Technologies). MIM structures with different 

areas were utilized (the MIM structures had round electrodes with radius equal to 250 μm, 

500 μm, and 1000 μm), so that the slope of the linear interpolant of the capacitance-area 

dataset would give the parasitic-free capacitance per unit area. The latter value was then 

multiplied by the film thickness to determine the dielectric permittivity. 
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Ultraviolet-visible absorbance of our organic thin films was measured in air through an 

HP845x spectrometer. The films of interest were deposited on Spectrosil® 2000 substrates, 

given their extremely low cut-off wavelength of about 200 nm. Bare substrates were used as 

the baseline for all spectra. 

 

Results and Discussion 

Dielectric Characterization. As a preliminary evaluation of the suitability of the selected 

polymeric insulators as gate dielectrics for AMOxS TFTs, we assessed their energy gaps by 

means of UV-vis transmission spectrometry. In fact, for an insulator to allow the charge 

confinement required for transistor performance, it is crucial that its energy band offsets with 

respect to the semiconductor are sufficiently large, and greater than approximately 1 eV.
[31]

 

Were this not the case, charge would be injected into the dielectric at small or moderate 

electric fields, causing a reduction in accumulated charge at the interface, an increase in gate 

current, and a deterioration of device stability. While this requirement is easily met by a great 

number of polymeric insulators with respect to a variety of semiconductors (e.g., organic 

semiconductors), the very large bandgap of AMOxSs (e.g., 3 eV for our IZO) makes it 

considerably more restrictive. Indeed, for charge confinement to be achieved in combination 

with an AMOxS, the gate dielectric should have a bandgap of at least 5 eV, with this lower 

limit corresponding to the best-case scenario in which the frontier energy bands of the 

dielectric are symmetrically located around the ones of the semiconductor. 

The optical gaps of the selected polymers, extracted from their UV-vis absorbance (see 

Supporting Information), are indicated in Table 1. Both our fluorinated polymers do not show 

appreciable absorption in the measured range, thus suggesting an optical gap greater than 6 

eV, well above the charge confinement limit for AMOxSs. All our non-fluorinated polymers, 

instead, exhibit an optical gap in the region of 5 eV, at the limit for charge confinement for 

AMOxSs.  
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To fully exploit the high charge-carrier mobility that AMOxSs are capable of, it is imperative 

that the gate dielectric has a consistent polarization up to frequencies in the megahertz region. 

The dielectric response of the selected polymers was characterized with an impedance 

analyzer, using thin-film MIM structures (polymer film thickness ≈ 200 nm). The extracted 

relative permittivities are listed in Table 1. The dielectric response is constant within the 

instrumental frequency range (up to 1 MHz) for all the low-κ materials, making them ideal 

candidates for stable and high-speed AMOxS-based TFTs (given the absence of slow 

polarization effects). The very large permittivity of our FRFT, instead, manifests a 

pronounced relaxation at frequencies higher than 40 kHz, and an appreciable field dependence 

beyond 400 kV cm
-1

 (see Supporting Information), thus confirming the behavior reported for 

terpolymers of the same class.
[34,35]

 As a consequence, this latter polymeric dielectric would 

lend itself to low-voltage transistor operation, but bearing a significant limitation in 

operational speed and driving gate voltage. 

Transistor Characteristics and Performance Parameters. Given the preliminary assessment 

above, all our selected polymeric insulators are potential candidates as gate dielectrics in 

AMOxS-based TFTs. To explore this possibility, we fabricated top-gate staggered TFTs with 

each of the polymeric dielectrics in combination with our IZO. In Figure 1a we show 

representative transfer characteristics of the resulting TFTs, acquired for a symmetric double 

gate voltage sweep applied in continuous mode. The TFTs were all operated in the linear 

region with VDS = 1 V. Hysteresis-free transistor behavior was observed for all the tested 

devices, with on/off ratios at the same level (10
8
) as those reported for IZO devices utilizing 

SiO2 as gate dielectric.
[33]

 The maximum gate voltage applied to all TFTs was such that the 

devices were subjected to a maximum gate field in the region of 4 MV cm
-1

, with the only 

exception being the FRFT TFTs, for which much lower gate fields were applied to achieve 

equivalent current levels. In all samples the gate current in electron accumulation was close to 

the detection limit of our instrumentation, denoting a gate leakage below 10 nA cm
-2

, the 



     

7 

 

latter value being reached at the maximum applied field. For negative gate voltages the 

situation was the same, except for the PαMS and PC TFTs, which were characterized by a 

slight increase in gate current (also reflected in the source and drain current) beyond an 

electric field greater than about 2 MV cm
-1

. The extremely low gate leakage for both voltage 

polarities suggests that these polymeric dielectrics are capable of providing the energy barrier 

necessary for charge confinement. Following Robertson's argument,
[31]

 we speculate that 

these dielectrics allow energy-band offsets in the region of or greater than 1 eV. 

We also measured the output characteristics of all our TFTs, a sample of which is shown in 

Figure 1b. They exhibit a linear behavior close to the origin of the IDS-VDS plane, indicating 

low contact resistance. As expected, the TFTs with the FRFT gate dielectric achieve low-

voltage transistor operation (within a voltage range of the order of 1 V), showing the 

versatility of this class of terpolymers in combination with inorganic semiconductors.
[36]

 

We extracted the linear field effect mobility of a number of TFTs comprising each of the 

selected polymeric dielectrics in combination with IZO. Given the differences in permittivity 

and thickness, it is best to express the mobility as a function of charge density for a fair 

comparison of the performance of all these transistors, as shown in Figure 2a. Specifically, 

following the approximation proposed by Hoffman,
[37]

 we estimated the induced charge 

density as Qind = CI (VGS - VON), where VON, the transistor onset voltage, was taken as the VGS 

at which IDS = 100 pA (for VDS = 1V). Figure 2a shows that the mobility varies roughly 

linearly with Qind, although a saturation effect may occur at high charge densities, as 

suggested by the change in slope of the PMMA trace. Mobility values in the range of 2−6 cm
2
 

V
-1

 s
-1

 are extracted from all our TFTs, comparable with the ones obtained for the same 

semiconductor in bottom-gate devices with thermal SiO2 as gate dielectric.
[33]

 

The dataset in Figure 2a does not allow us to resolve the minor differences in mobility 

between samples having gate dielectrics with similar permittivities, particularly the ones with 

PMMA, SAN, and PC. Over a larger range of permittivities, however, a trend is apparent, as 



     

8 

 

the CYTOP™ TFTs (with κ = 2.1) give a significantly higher mobility than the ones using 

FRFT (κ = 40), while the samples with intermediate permittivities result in intermediate 

mobility values. The dependence of the mobility on the permittivity, however, is rather weak 

compared to what was observed for organic semiconductors, the other major class of 

semiconductors in the same mobility range as AMOxSs. In fact, for both semiconducting 

polymers
[38,39]

 and organic crystalline molecular films,
[40,41]

 the mobility changes by orders of 

magnitude with the relative permittivity of the gate dielectric. In this latter class of materials 

the effect was found to derive from the coupling between the charge carriers and the polar 

environment dictated by the gate dielectric, which is strong given the very high effective mass 

of the charge carriers in organic semiconductors. The weak dependence of the mobility on 

relative permittivity we observe in our hybrid AMOxS-based TFTs suggests that such 

interaction is much weaker for electrons in IZO, as it can be expected from their very low 

effective mass.
[42,43]

 

The subthreshold slope extracted from the linear transfer characteristics of our hybrid TFTs 

manifests an inverse dependence on the relative permittivity of the gate dielectric, with the 

CYTOP™ TFTs giving the highest values (≈ 2 V dec
-1

) and the FRFT TFTs the lowest (≤ 100 

mV dec
-1

, nearly an order of magnitude lower than the other TFTs, and quite close to the 

theoretical limit at room temperature
[44]

). We used these values to estimate the effective trap 

state density Neff at the semiconductor-dielectric interface through the equation S = k T / q 

log(10) (1 + q
2
 / CI Neff).

[44]
 The estimated densities are shown in Figure 2b. They are in the 

region of 10
12

 cm
-2

 eV
-1

, except for the FRFT TFTs, which yield significantly lower values. 

From this we gather that the decreasing trend observed in the subthreshold slope is primarily 

determined by the stronger gate-to-channel capacitive coupling allowed by gate dielectrics 

with higher permittivity. In this respect, the much lower subthreshold slope and reduced trap 

state density show the potential of FRFT as the gate dielectric for low-voltage hybrid TFTs. 
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The extracted trap state densities are perfectly aligned with the literature values for bottom-

gate TFTs with sputtered and solution-processed AMOxSs and employing inorganic gate 

dielectrics.
[45–48]

 When compared with the top-gate AMOxS TFTs reported in the literature, a 

distinction must be made on the basis of the deposition technique employed for the gate 

dielectric. Indeed, our hybrid TFTs show trap state densities matching the values of top-gate 

devices with gate dielectrics deposited by ALD and PECVD,
[49]

 but are superior to the ones 

fabricated with sputtered dielectrics.
[50]

 

Constant-Current Bias Stress. Constant-current transistor operation is of great technological 

importance, as it directly relates to the possibility of using the TFTs in one of the most 

attractive applications of all, namely AMOLED displays. Specifically, it has been estimated 

that TFTs are to be capable of supplying a current of 250 nA for an equivalent aspect ratio of 

W / L = 5  to meet the required performance level.
[51]

 

Constant-current bias-stress experiments were performed on our TFTs comprising all the 

selected polymeric dielectrics. In these stress experiments, the TFTs were subjected to a 

constant current of 5 μA so to conform to the operational requirement mentioned above. Gate 

and drain electrodes were shorted throughout the duration of the stress, which was interrupted 

only for the measurement of the transistor transfer characteristics at logarithmically spaced 

times. 

Figure 3 shows the shift in gate voltage necessary to maintain the constant current over a 

stress time of 14 h. The spikes present in each trace are due to the transient charging of the 

channel after measuring the transfer characteristics. Two kinds of behavior emerge: on one 

hand, the TFTs with the FRFT dielectric undergo a negative gate voltage shift; on the other, 

the rest of the TFTs exhibit a positive gate-voltage shift. The overall shifts are extremely 

small, especially considering the sizeable stress time: in the TFTs with low-κ dielectrics ∆VG 

≤ 0.7 V, and in the PC, SAN and PMMA ones the shift is as low as 0.1 V; the FRFT sample, 

instead, gives ∆VG = -0.5 V. 
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In the TFTs with low-κ dielectrics, the differences in bias-stress behavior are likely to arise 

from sample-to-sample variations, given that the traces are very close to one another. All of 

them give a matching shift of onset and threshold voltages, along with a constant subthreshold 

slope (see Supporting Information). Moreover, mobility as a function of gate voltage is rigidly 

shifted in the direction of the applied bias. As for the terpolymer device, its bias-stress 

behavior takes the form of a progressive degradation of the subthreshold slope and an increase 

of the on current (see Supporting Information). All these findings suggest that charge trapping 

is the cause of the observed degradation for the TFTs with low-κ dielectrics, whereas a slow 

polarization effect may yield the FRFT device behavior. We fitted the threshold voltage shift 

of the low-κ devices with the conventional power law for constant-current bias-stress,
[52]

 but 

the extracted fitting parameters are characterized by a large uncertainty due to their small gate 

voltage shifts. Finally, we note that the observed stability of our hybrid solution-based TFTs 

is on par with the one reported under equivalent stress conditions for state-of-the-art oxide 

devices produced by vacuum techniques.
[53]

 

 

Conclusions 

In this study we demonstrated the wide applicability of organic polymeric insulators as gate 

dielectrics in metal-oxide-semiconductor transistors, which give state-of-the-art mobility, on-

off current ratios, and trap state densities. The field-effect mobility monotonically increases 

with charge density, and exhibits a weak dependence on the permittivity of the polymeric 

dielectrics, indicative of the delocalized nature of the charge carriers in the oxide 

semiconductor. Moreover, the low trap state densities, in the region of 10
12

 cm
-2

 eV
-1

, 

evidence that the selected polymeric dielectrics are inert with respect to the charge carriers in 

the oxide semiconductor. This fact is further confirmed by the suitable charge confinement 

provided by the explored range of polymeric dielectrics under electron accumulation, 

suggesting a conduction band offset in excess of 1 eV. Remarkably, adequate charge 
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confinement was observed even for a polymer dielectric with a permittivity as high as 40, thus 

indicating a way of circumventing the inverse EG - κ correlation characteristic of inorganic 

dielectrics and their problematic energy-band alignment with AMOxSs. Finally, the strength 

of our transistors is demonstrated by their stability under electrical stress, with our best 

semiconductor-dielectric combinations giving a threshold voltage shift as low as 0.1 V after 

14 h stress under demanding constant-current operating conditions.  

Our study clearly indicates that organic polymeric dielectrics are an attractive alternative to 

the inorganic ones for AMOxS-based TFTs. We thus believe that the combination of solution-

processed polymeric dielectrics and precursor-based metal-oxide semiconductors have the 

potential to meet the performance, reliability, and processing challenges of large-area 

electronics.  
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Table 1. Optical gaps and relative permittivities of the selected polymeric dielectrics 

extracted from the measured data. The repeat units of each of the polymeric dielectrics are 

also reported. 

Polymeric 

Dielectric 

[units]
a)
 

Repeat Unit Optical 

Gap 

[eV] 

Relative 

Permittivity
a)
 

CYTOP™ 

 

>  6 2.1 

PαMS 

 

5.09 2.5 

PC 

 

4.98 3.2 

SAN 

 

5.37 3.4 

PMMA  4.92 3.5 

FRFT 

 

>  6 40 

a)
 Measured at 1 kHz 

CF

nCF2

CF2O

CF2 CF2

CF
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Figure 1. Linear transfer characteristics (a) of solution-based IZO TFTs utilizing all our 

polymeric dielectrics, and output characteristics (b) of a representative selection of them.  
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Figure 2. Average linear mobility versus charge density (a) and effective trap density versus 

relative permittivity (b) extracted from the transfer characteristics of a number (≈ 10) of IZO 

devices with each the selected polymeric gate dielectrics. The average mobility is the 

arithmetic average of the mobility over all samples of each kind, and the error bars indicate 

the spread at the maximum charge carrier density. 
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Figure 3. Gate-voltage shifts during the constant-current stress experiments presented in this 

section. 
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Supporting Information  
 

S.1 UV-vis absorbance of polymeric dielectrics 

 

The UV-vis absorbance behavior of the selected polymers in thin-film form (thickness less 

than approximately 1μm) is shown in Figure S1. Both our fluorinated polymers do not exhibit 

appreciable absorption in the measured range. As for the other selected polymers, we fitted 

their absorbance with a power law of the Tauc type: (h ν A(ν))
1/2

 ~ (h ν - Eg), where A is the 

film absorbance and ν the optical frequency. A good fit of the measured data was obtained, as 

shown by the solid green lines in Figure S1, from which we determined the optical gaps listed 

in Table 1. 

 

S.2 Dielectric Response of FRFT 

The dielectric response of FRFT thin films was evaluated both at varying frequency and 

voltages, as shown in Figure S2. The measurement was performed on MIM devices 

consisting of a 215 nm-thick FRFT film sandwiched between aluminium electrodes. The 

measured data shows an appreciable dispersion of the dielectric response, and a decay of the 

polarization at sufficiently high fields. 

 

S.3 Gate Leakage Behavior 

The PαMS and PC TFTs are characterized by a slight increase in gate current (also reflected 

in the source and drain current) for large negative gate voltages (beyond E greater than 

approximately 2 MV cm
-1

). In general terms, current through the gate dielectric could arise 

from a variety of mechanisms. Given the specifics of the observed TFT behavior, we can rule 

out the migration of ionic impurities, the field-assisted detrapping of charge carriers from the 

bulk dielectric (Poole-Frenkel emission), and space-charge-limited current, as these 

mechanisms would yield symmetric gate leakage curves; direct tunneling can also be 
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excluded, given the thickness of our dielectric films. It is then possible that the measured gate 

current reflects the charge confinement properties of PC and PαMS with respect to our 

semiconductor: on the one hand, injection into the dielectric would not occur in electron 

accumulation because of a large conduction-band offset; on the other, injection would occur 

for negative gate voltages because the valence-band offset can be overcome at a sufficiently 

high electric field. In principle, however, charge could also be injected from the electrodes. 

Specifically, for VG < 0 V, electron injection could occur from the aluminum gate, and hole 

injection from the gold source and drain. Inspection of the energy-band diagram of the 

transistor stack (see Figure S3), however, makes it obvious that injection from the gate 

electrode would be unphysical. In fact, if electron injection from the aluminum gate occurred 

for VG < 0 V, we would also observe injection from IZO in electron accumulation, given that 

the workfunction of aluminum is roughly the same as the electron affinity of IZO. As for hole 

injection from the gold source and drain for VG < 0 V, in principle a much higher energy 

barrier would have to be overcome than for holes from the semiconductor, given that the 

workfunction of gold is smaller than the ionization potential of IZO (by approximately 2 eV). 

As holes cannot be accumulated in AMOxSs, we thus speculate that the leakage current for 

VG < 0 V may be due to holes from the gold source and drain electrodes relying on a stepped 

injection profile through the interposed IZO film. Finally, Fowler-Nordheim plots of the 

measured leakage current (see Figure S4) show a linear dependence of ln(IG / Eel
2
) versus the 

reciprocal of the gate electric field 1/Eel, thus confirming the possibility of hole tunneling 

through a thinned energy barrier (Fowler-Nordheim tunneling) into PαMS and PC. 

We conclude that PαMS and PC are both capable of providing the necessary confinement in 

electron accumulation, thus suggesting a conduction-band offset in excess of 1 eV; the slight 

rise in gate leakage at large negative gate bias, however, hints at a reduced valence-band 

offset. Given that their bandgap is in the region of 5 eV, the observed leakage is indicative of 
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an asymmetric placement of their bands with respect to the semiconductor, with a conduction-

band offset larger than the valence-band one. 

 

S.4 Constant-Current-Stress Stability 

Here we show the threshold voltage and substreshold slope of our low-κ hybrid devices under 

the constant-current stress we have reported in Section 3.3. The threshold voltage shifts 

shown in Figure S5 match closely the gate voltage ones in Figure 3, and no degradation of 

the subthreshold slope is observed. Conversely, the set of transfer characteristics of the FRFT 

devices under stress, shown in Figure S6, denote an increase of the subthreshold slope, 

suggesting a different degradation mechanism. 
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Figure S1. Tauc plots of the selected polymers, with the blue circles obtained from the 

measured absorbance, and the green lines being the linear fit within the pertinent domain. 
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Figure S2. Relative permittivity versus frequency (a), relative permittivity versus electric 

field (b) of the FRFT. The capacitance versus frequency was measured for a voltage drop of 

VMIM = 0 V across the MIM devices, and the double-sweep capacitance versus voltage was 

measured at an oscillation frequency of fosc = 100 Hz (the arrows denoting the direction of the 

sweep, with the red trace being acquired first) 
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Figure S3. Schematic energy-band diagram of our hybrid TFTs for positive and negative gate 

voltages. The red arrows indicate the possible pathways for injection into the dielectric. The 

dashed line for the gold source and drain correspond to the regions where these electrodes 

overlap with the gate without any semiconductor on top. 
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Figure S4. Fowler-Nordheim plots of the gate leakage in a manifold of PαMS and PC TFTs 

for VG<0V. 
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Figure S5. Threshold-voltage shift (on the left) and subthreshold slope (on the right) of our 

IZO TFTs during constant-current stress experiments with ID = 5 μA. 
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Figure S6. Transfer characteristics of an IZO/FRFT TFT during a constant-current stress 

experiment with ID = 5 μA. 

 

 


